organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ivan E. Kareev,^{a,b} Sergey F. Lebedkin,^b Susie M. Miller,^c Oren P. Anderson,^c Steven H. Strauss^{c*} and Olga V. Boltalina^c

^aInstitute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Russian Federation, ^bForschungszentrum Karlsruhe, Institute for Nanotechnology, Karlsruhe 76021, Germany, and ^cDepartment of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA

Correspondence e-mail: steven.strauss@colostate.edu

Key indicators

Single-crystal X-ray study T = 100 KMean σ (C–C) = 0.002 Å R factor = 0.045 wR factor = 0.130 Data-to-parameter ratio = 23.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1,6,11,16,18,26,36,44,48,58-Decakis(trifluoromethyl)-1,6,11,16,18,26,36,44,48,58-decahydro(C₆₀-*I*_h)[5,6]fullerene benzene hemisolvate

The title compound, $C_{70}F_{30} \cdot 0.5C_6H_6$, which crystallizes with one half-molecule of benzene in the asymmetric unit, is one of four isomers of $C_{60}(CF_3)_{10}$. The benzene molecule is disposed about a center of inversion. The fullerene molecule has an idealized C_{60} - I_h core, with the ten CF₃ groups arranged in an asymmetric *para-para-para-meta-para-meta-para* $(p^3mpmpmp)$ ribbon of edge-sharing $C_6(CF_3)_2$ hexagons. There are no cage Csp^3 - Csp^3 bonds. There are intramolecular $F \cdot \cdot \cdot F$ contacts between pairs of neighboring CF₃ groups, ranging from 2.565 (1) to 2.727 (1) Å.

Comment

Recently reported high-temperature reactions of C₆₀, C₇₀ or C₈₂ fullerenes with CF₃I, C₂F₅I or Ag(CF₃CO₂), followed by sublimation at 673–773 K, have yielded fullerene(R_f)_n derivatives with thermodynamically stable addition patterns that are both asymmetric and unprecedented in fullerene(X)_n chemistry (Goryunkov et al., 2003; Kareev, Lebedkin, Bubnov et al., 2005; Kareev, Kuvychko, Lebedkin et al., 2005; Dorozhkin et al., 2006). Compounds characterized to date by single-crystal X-ray diffraction are 1,3,7,10,14,17,23,28,31,40- $C_{60}(CF_3)_{10}$ (Kareev, Kuvychko, Lebedkin *et al.*, 2005), $1,4,10,19,25,41,49,60,66,69-C_{70}(CF_3)_{10}$ (Kareev, Kuvychko, Popov et al., 2005), 1,4,10,19,25,32,41,49,54,60,66,69-C₇₀(CF₃)₁₂ (Kareev, Lebedkin, Miller et al., 2006a), 1,4,10,14,19,25,35,41,-49,60,66,69-C₇₀(CF₃)₁₂ (Kareev, Lebedkin, Miller et al., 2006b), and 1,7,16,36,46,49-C₆₀(C₂F₅)₆ and 1,6,11,18,24,27,-32,35-C₆₀(C₂F₅)₈ (Kareev, Kuvychko et al., 2006). A related and unprecedented C_2 symmetry addition pattern has been observed in $1,6,12,15,18,23,25,41,45,57-C_{60}(CF_3)_{10}$ (Kareev, Lebedkin, Popov et al., 2006). The title compound, (I), has now been prepared and we report its crystal structure here.

© 2006 International Union of Crystallography All rights reserved Received 22 February 2006

Accepted 6 March 2006

Figure 1

On the left, the molecular structure of (I), with 50% probability displacement ellipsoids. Atom F611 is attached to atom C61, atom F621 is attached to atom C62, *etc.* On the right, a Schlegel diagram for (I), showing the C₆₀ core C-atom numbers (each core C atom bearing a CF₃ group is depicted as a black circle) and the $p^3mpmpmp$ ribbon of *meta*-and *para*-C₆(CF₃)₂ edge-sharing hexagons [*meta*-C₆(CF₃)₂ hexagons are indicated by the letter *m*].

The structure of (I) (Fig. 1) comprises an idealized $C_{60}-I_h$ core with ten sp^3 C atoms at positions 1, 6, 11, 16, 18, 26, 36, 44, 48 and 58 (Powell *et al.*, 2002), each of which is attached to a CF₃ group. The core sp^3 C atoms are not adjacent to one another. The CF₃ groups are arranged in a *para-para-parameta-para-meta-para-meta-para* ribbon (*i.e.* a $p^3mpmpmp$ ribbon) of edge-sharing C₆(CF₃)₂ hexagons (see Schlegel diagram in Fig. 1). Note that the shared edges in the ribbon of hexagons are Csp^3-Csp^2 bonds (*e.g.* C16-C17, C4-C18 *etc.*), not Csp^2-Csp^2 bonds. Thus, any pair of adjacent hexagons along the ribbon has a common CF₃ group. As in the recently published structure of $C_s \cdot p^7 \cdot C_{70}(CF_3)_8$ (Goryunkov *et al.*, 2005) and the other structures listed above, there are $F \cdots F$ intramolecular contacts between pairs of neighboring CF₃ groups, in the range 2.565 (1)–2.727 (1) Å.

To date, there are at least four isomers of $C_{60}(CF_3)_{10}$ that have been prepared at high temperature, isolated and characterized. ¹⁹F NMR spectroscopy has shown that one of them has the ten CF₃ groups arranged in a ribbon of seven metaand para- $C_6(CF_3)_2$ edge-sharing hexagons plus an isolated para-C₆(CF₃)₂ hexagon (Kareev, Kuvychko, Lebedkin et al., 2005). The other three, namely compound (I), C_1 -pmp³mpmp-C₆₀(CF₃)₁₀, (II) (Kareev, Kuvychko, Lebedkin et al., 2005), and $C_2 - [p^3 m^2(\text{loop})]^2 - C_{60}(CF_3)_{10}$, (III) (Kareev, Lebedkin, Popov et al., 2006), have been structurally characterized by single-crystal X-ray diffraction. For comparison, Schlegel diagrams for all three are shown in Fig. 2. The pmp³mpmp ribbon in (II) forms a loop in which two of the meta- $C_6(CF_3)_2$ hexagons have a common Csp^2-Csp^2 bond (C2-C12). In addition, isomer (II) is the only fullerene $(R_f)_n$ derivative that has been unambiguously shown to have two $R_{\rm f}$ groups on the same pentagon. The structure of (III) is significantly different from those of the other two isomers in that every CF₃ group has two CF_3 nearest neighbors (*i.e.* there are no 'terminal' CF_3 groups). Instead, it has two symmetry-related p^3m^2 loops of five edge-sharing $C_6(CF_3)_2$ hexagons which are joined by a

Schlegel diagrams for (I), (II) and (III), showing the locations of the CF₃ groups as black circles, the IUPAC lowest-locant numbers for the cage C atoms to which they are attached, and the ribbons or loops of *meta*- and *para*-C₆(CF₃)₂ edge-sharing hexagons [*meta*-C₆(CF₃)₂ hexagons are indicated by the letter *m*].

 $Csp^2 - Csp^2$ bond that is common to one of the *meta*- $C_6(CF_3)_2$ hexagons in each loop. These three structures, each of which has unique features as well as features in common with the other two, demonstrate that a given exohedral fullerene(R_f)_n composition may have multiple high-temperature addition patterns that comprise ribbons and/or loops of *meta*- and *para*- $C_6(R_f)_2$ hexagons on the fullerene surface.

The four shortest cage C-C bonds in (I) are C9-C10 [1.3544 (14) Å], C28–C29 [1.3546 (15) Å], C17–C37 [1.3553 (15) Å] and C4–C5 [1.3579 (15) Å]. All four are significantly shorter than the shortest C-C bond in the most precise structure of empty C₆₀ reported to date, which is 1.379 (3) Å for C_{60} ·Pt(octaethylporphyrin) [C_{60} ·Pt(OEP); Olmstead et al., 2003]. More importantly, three of these bonds, C9-C10, C17-C37 and C4-C5, are pentagon-hexagon (pent-hex) junctions, and the shortest pent-hex junction in C_{60} ·Pt(OEP) is 1.440 (3) Å, while the longest is 1.461 (3) Å (Olmstead et al., 2003). For comparison, the ranges of the four shortest pent-hex junctions in (II) and (III) are 1.343 (3)-1.365 (3) Å (Kareev, Kuvychko, Lebedkin et al., 2005) and 1.344 (3)–1.364 (3) Å (Kareev, Lebedkin, Popov et al., 2006), respectively.

Experimental

The synthesis of (I) was accomplished by heating C_{60} in a stream of CF_3I at 733 K, as previously reported by Kareev, Kuvychko, Lebedkin *et al.* (2005); isomer (I) corresponds to $C_{60}(CF_3)_{10}$ -2 in that paper. The compound was purified by high-performance liquid chromatography and crystals of (I) were grown by slow evaporation of a saturated benzene solution.

Crystal data	
$C_{70}F_{30} \cdot 0.5C_6H_6$	Z = 2
$M_r = 1449.75$	$D_x = 1.938 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 11.0290 (15) Å	Cell parameters from 999
b = 13.7614 (18) Å	reflections
c = 16.443 (2) Å	$\theta = 1.7–26.4^{\circ}$
$\alpha = 87.785 \ (6)^{\circ}$	$\mu = 0.19 \text{ mm}^{-1}$
$\beta = 85.082 \ (7)^{\circ}$	T = 100 (1) K
$\gamma = 88.850 \ (6)^{\circ}$	Plate, orange
V = 2484.2 (6) Å ³	$0.37 \times 0.22 \times 0.04 \text{ mm}$

Data collection

Bruker Kappa-APEXII	21894 independent reflections
diffractometer	16852 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.031$
Absorption correction: multi-scan	$\theta_{\rm max} = 35.2^{\circ}$
(SADABS; Bruker, 2000)	$h = -16 \rightarrow 17$
$T_{\min} = 0.933, T_{\max} = 0.992$	$k = -22 \rightarrow 22$
53487 measured reflections	$l = -26 \rightarrow 26$

Refinement

 Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.0675P)^2 + 1.8907P]$
 $R[F^2 > 2\sigma(F^2)] = 0.045$ + 1.8907P]

 $wR(F^2) = 0.130$ where $P = (F_o^2 + 2F_c^2)/3$

 S = 1.03 $(\Delta/\sigma)_{max} = 0.001$

 21894 reflections
 $\Delta\rho_{max} = 0.65$ e Å⁻³

 928 parameters
 $\Delta\rho_{min} = -0.32$ e Å⁻³

 H-atom parameters constrained
 ω

H atoms were placed in idealized positions and refined using a riding model, with C-H = 0.95 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *APEX2*; data reduction: *APEX2*; program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors thank the US National Science Foundation, the Volkswagen Foundation (grant No. I-77/855) and the Russian Foundation for Basic Research (project Nos. 05-03-33051a and 06-03-33147a) for supporting this study.

References

- Bruker (2000). *SADABS* (Version 2.10) and *SHELXTL* (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2006). APEX2 (Version 2.0-2). Bruker AXS Inc., Madison, Wisconsin, USA.
- Dorozhkin, E. I., Ignat'eva, D. V., Tamm, N. B., Goryunkov, A. A., Khavrel, P. A., Ioffe, I. N., Popov, A. A., Kuvychko, I. V., Streletskiy, A. V., Markov, V. Yu., Spandl, J., Strauss, S. H. & Boltalina, O. V. (2006). *Chem. Eur. J.* 12. In the press.
- Goryunkov, A. A., Dorozhkin, E. I., Ignat'eva, D. F., Sidorov, L. N., Kemnitz, E., Sheldrick, G. & Troyanov, S. I. (2005). *Mendeleev Commun.* pp. 225–227.
- Goryunkov, A. A., Kuvychko, I. V., Ioffe, I. N., Dick, D. L., Sidorov, L. N., Strauss, S. H. & Boltalina, O. V. (2003). J. Fluorine Chem. 124, 61–64.
- Kareev, I. E., Kuvychko, I. V., Lebedkin, S. F., Miller, S. M., Anderson, O. P., Seppelt, K., Strauss, S. H. & Boltalina, O. V. (2005). J. Am. Chem. Soc. 127, 8362–8375.
- Kareev, I. E., Kuvychko, I. V., Popov, A. A., Lebedkin, S. F., Miller, S. M., Anderson, O. P., Strauss, S. H. & Boltalina, O. V. (2005). *Angew. Chem. Int. Ed.* 41, 7984–7987.
- Kareev, I. E., Kuvychko, I. V., Lebedkin, S. F., Miller, S. M., Anderson, O. P., Strauss, S. H. & Boltalina, O. V. (2006). *Chem. Commun.* pp. 308–310.
- Kareev, I. E., Lebedkin, S. F., Bubnov, V. P., Yagubskii, E. B., Ioffe, I. N., Kharel, P. A., Kuvychko, I. V., Strauss, S. H. & Boltalina, O. V. (2005). *Angew. Chem. Int. Ed.* 44, 1846–1849.
- Kareev, I. E., Lebedkin, S. F., Miller, S. M., Anderson, O. P., Strauss, S. H. & Boltalina, O. V. (2006a). Acta Cryst. E62, 0617–0619.
- Kareev, I. E., Lebedkin, S. F., Miller, S. M., Anderson, O. P., Strauss, S. H. & Boltalina, O. V. (2006b). Acta Cryst. E62, o620–o622.
- Kareev, I. E., Lebedkin, S. F., Popov, A. A., Miller, S. M., Anderson, O. P., Strauss, S. H. & Boltalina, O. V. (2006). Acta Cryst. E62, o1501–01503.
- Olmstead, M. M., de Bettencourt-Dias, A., Lee, H. M., Pham, D. & Balch, A. L. (2003). *Dalton Trans.* pp. 3227–3232.
- Powell, W. H., Cozzi, F., Moss, G. P., Thilgen, C., Hwu, R. J.-R. & Yerin, A. (2002). Pure Appl. Chem. 74, 629–695.