Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

Ivan E. Kareev, ${ }^{\text {a,b }}$ Sergey $F$. Lebedkin, ${ }^{\text {b }}$ Susie M. Miller, ${ }^{\text {c }}$ Oren P. Anderson, ${ }^{\text {c }}$ Steven H. Strauss ${ }^{\text {c* }}$ and Olga V. Boltalina ${ }^{\text {c }}$
${ }^{\mathrm{a}}$ Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Russian Federation,
${ }^{\mathbf{b}}$ Forschungszentrum Karlsruhe, Institute for Nanotechnology, Karlsruhe 76021, Germany, and ${ }^{\text {c }}$ Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA

Correspondence e-mail:
steven.strauss@colostate.edu

## Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
$R$ factor $=0.045$
$w R$ factor $=0.130$
Data-to-parameter ratio $=23.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# 1,6,11,16,18,26,36,44,48,58-Decakis(trifluoro-methyl)-1,6,11,16,18,26,36,44,48,58-decahydro $\left(\mathrm{C}_{60}-I_{\mathrm{h}}\right)[5,6]$ fullerene benzene hemisolvate 

The title compound, $\mathrm{C}_{70} \mathrm{~F}_{30} \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{6}$, which crystallizes with one half-molecule of benzene in the asymmetric unit, is one of four isomers of $\mathrm{C}_{60}\left(\mathrm{CF}_{3}\right)_{10}$. The benzene molecule is disposed about a center of inversion. The fullerene molecule has an idealized $\mathrm{C}_{60}-I_{\mathrm{h}}$ core, with the ten $\mathrm{CF}_{3}$ groups arranged in an asymmetric para-para-para-meta-para-meta-para-meta-para ( $p^{3} m p m p m p$ ) ribbon of edge-sharing $\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{2}$ hexagons. There are no cage $\mathrm{Cs} p^{3}-\mathrm{Csp} p^{3}$ bonds. There are intramolecular $\mathrm{F} \cdots \mathrm{F}$ contacts between pairs of neighboring $\mathrm{CF}_{3}$ groups, ranging from 2.565 (1) to 2.727 (1) $\AA$.

## Comment

Recently reported high-temperature reactions of $\mathrm{C}_{60}, \mathrm{C}_{70}$ or $\mathrm{C}_{82}$ fullerenes with $\mathrm{CF}_{3} \mathrm{I}, \mathrm{C}_{2} \mathrm{~F}_{5} \mathrm{I}$ or $\mathrm{Ag}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)$, followed by sublimation at $673-773 \mathrm{~K}$, have yielded fullerene $\left(R_{\mathrm{f}}\right)_{n}$ derivatives with thermodynamically stable addition patterns that are both asymmetric and unprecedented in fullerene $(X)_{n}$ chemistry (Goryunkov et al., 2003; Kareev, Lebedkin, Bubnov et al., 2005; Kareev, Kuvychko, Lebedkin et al., 2005; Dorozhkin et al., 2006). Compounds characterized to date by single-crystal X-ray diffraction are 1,3,7,10,14,17,23,28,31,40$\mathrm{C}_{60}\left(\mathrm{CF}_{3}\right)_{10}$ (Kareev, Kuvychko, Lebedkin et al., 2005), 1,4,10,19,25,41,49,60,66,69-C ${ }_{70}\left(\mathrm{CF}_{3}\right)_{10} \quad$ (Kareev, Kuvychko, Popov et al., 2005), 1,4,10,19,25,32,41,49,54,60,66,69- $\mathrm{C}_{70}\left(\mathrm{CF}_{3}\right)_{12}$ (Kareev, Lebedkin, Miller et al., 2006a), 1,4,10,14,19,25,35,41,-49,60,66,69-C ${ }_{70}\left(\mathrm{CF}_{3}\right)_{12}$ (Kareev, Lebedkin, Miller et al., $2006 b$ ), and $1,7,16,36,46,49-\mathrm{C}_{60}\left(\mathrm{C}_{2} \mathrm{~F}_{5}\right)_{6}$ and $1,6,11,18,24,27,-$ $32,35-\mathrm{C}_{60}\left(\mathrm{C}_{2} \mathrm{~F}_{5}\right)_{8}$ (Kareev, Kuvychko et al., 2006). A related and unprecedented $C_{2}$ symmetry addition pattern has been observed in $1,6,12,15,18,23,25,41,45,57-\mathrm{C}_{60}\left(\mathrm{CF}_{3}\right)_{10}$ (Kareev, Lebedkin, Popov et al., 2006). The title compound, (I), has now been prepared and we report its crystal structure here.


Received 22 February 2006
Accepted 6 March 2006
(C) 2006 International Union of Crystallography All rights reserved


Figure 1
On the left, the molecular structure of (I), with $50 \%$ probability displacement ellipsoids. Atom F611 is attached to atom C61, atom F621 is attached to atom C62, etc. On the right, a Schlegel diagram for (I), showing the $\mathrm{C}_{60}$ core C -atom numbers (each core C atom bearing a $\mathrm{CF}_{3}$ group is depicted as a black circle) and the $p^{3}$ mpmpmp ribbon of metaand para- $\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{2}$ edge-sharing hexagons $\left[\right.$ meta- $\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{2}$ hexagons are indicated by the letter $m$ ].

The structure of (I) (Fig. 1) comprises an idealized $\mathrm{C}_{60}-I_{\mathrm{h}}$ core with ten $s p^{3} \mathrm{C}$ atoms at positions $1,6,11,16,18,26,36,44$, 48 and 58 (Powell et al., 2002), each of which is attached to a $\mathrm{CF}_{3}$ group. The core $s p^{3} \mathrm{C}$ atoms are not adjacent to one another. The $\mathrm{CF}_{3}$ groups are arranged in a para-para-para-meta-para-meta-para-meta-para ribbon (i.e. a $p^{3}$ mpmpmp ribbon) of edge-sharing $\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{2}$ hexagons (see Schlegel diagram in Fig. 1). Note that the shared edges in the ribbon of hexagons are $\mathrm{C} s p^{3}-\mathrm{Cs} p^{2}$ bonds (e.g. $\mathrm{C} 16-\mathrm{C} 17, \mathrm{C} 4-\mathrm{C} 18$ etc.), not $\mathrm{Csp} p^{2}-\mathrm{C} s p^{2}$ bonds. Thus, any pair of adjacent hexagons along the ribbon has a common $\mathrm{CF}_{3}$ group. As in the recently published structure of $C_{\mathrm{s}}-p^{7}-\mathrm{C}_{70}\left(\mathrm{CF}_{3}\right)_{8}$ (Goryunkov $e t$ al., 2005) and the other structures listed above, there are F $\cdots$ F intramolecular contacts between pairs of neighboring $\mathrm{CF}_{3}$ groups, in the range 2.565 (1)-2.727 (1) $\AA$.
To date, there are at least four isomers of $\mathrm{C}_{60}\left(\mathrm{CF}_{3}\right)_{10}$ that have been prepared at high temperature, isolated and characterized. ${ }^{19}$ F NMR spectroscopy has shown that one of them has the ten $\mathrm{CF}_{3}$ groups arranged in a ribbon of seven metaand para- $\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{2}$ edge-sharing hexagons plus an isolated para- $\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{2}$ hexagon (Kareev, Kuvychko, Lebedkin et al., 2005). The other three, namely compound (I), $C_{1}-$ pmp ${ }^{3} m p m p-$ $\mathrm{C}_{60}\left(\mathrm{CF}_{3}\right)_{10}$, (II) (Kareev, Kuvychko, Lebedkin et al., 2005), and $C_{2}-\left[p^{3} m^{2}(\mathrm{loop})\right]^{2}-\mathrm{C}_{60}\left(\mathrm{CF}_{3}\right)_{10}$, (III) (Kareev, Lebedkin, Popov et al., 2006), have been structurally characterized by single-crystal X-ray diffraction. For comparison, Schlegel diagrams for all three are shown in Fig. 2. The pmp ${ }^{3} m p m p$ ribbon in (II) forms a loop in which two of the meta- $\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{2}$ hexagons have a common $\mathrm{Cs} p^{2}-\mathrm{Csp}{ }^{2}$ bond ( $\mathrm{C} 2-\mathrm{C} 12$ ). In addition, isomer (II) is the only fullerene $\left(R_{\mathrm{f}}\right)_{n}$ derivative that has been unambiguously shown to have two $R_{\mathrm{f}}$ groups on the same pentagon. The structure of (III) is significantly different from those of the other two isomers in that every $\mathrm{CF}_{3}$ group has two $\mathrm{CF}_{3}$ nearest neighbors (i.e. there are no 'terminal' $\mathrm{CF}_{3}$ groups). Instead, it has two symmetry-related $p^{3} m^{2}$ loops of five edge-sharing $\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{2}$ hexagons which are joined by a


Figure 2
Schlegel diagrams for (I), (II) and (III), showing the locations of the $\mathrm{CF}_{3}$ groups as black circles, the IUPAC lowest-locant numbers for the cage C atoms to which they are attached, and the ribbons or loops of meta- and para- $\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{2}$ edge-sharing hexagons $\left[\right.$ meta- $\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{2}$ hexagons are indicated by the letter $m$ ].
$\mathrm{Csp} p^{2}-\mathrm{Csp}^{2}$ bond that is common to one of the meta- $\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{2}$ hexagons in each loop. These three structures, each of which has unique features as well as features in common with the other two, demonstrate that a given exohedral fullerene $\left(R_{\mathrm{f}}\right)_{\mathrm{n}}$ composition may have multiple high-temperature addition patterns that comprise ribbons and/or loops of meta- and para$\mathrm{C}_{6}\left(R_{\mathrm{f}}\right)_{2}$ hexagons on the fullerene surface.

The four shortest cage $\mathrm{C}-\mathrm{C}$ bonds in (I) are $\mathrm{C} 9-\mathrm{C} 10$ $[1.3544$ (14) Å], $\quad$ C28-C29 $\quad[1.3546$ (15) A $], \quad \mathrm{C} 17-\mathrm{C} 37$ $[1.3553(15) \AA]$ and $\mathrm{C} 4-\mathrm{C} 5[1.3579(15) \AA]$. All four are significantly shorter than the shortest $\mathrm{C}-\mathrm{C}$ bond in the most precise structure of empty $\mathrm{C}_{60}$ reported to date, which is 1.379 (3) $\AA$ for $\mathrm{C}_{60} \cdot \mathrm{Pt}\left(\right.$ octaethylporphyrin) $\quad\left[\mathrm{C}_{60} \cdot \mathrm{Pt}(\mathrm{OEP})\right.$; Olmstead et al., 2003]. More importantly, three of these bonds, $\mathrm{C} 9-\mathrm{C} 10, \mathrm{C} 17-\mathrm{C} 37$ and $\mathrm{C} 4-\mathrm{C} 5$, are pentagon-hexagon (pent-hex) junctions, and the shortest pent-hex junction in $\mathrm{C}_{60} \cdot \mathrm{Pt}(\mathrm{OEP})$ is 1.440 (3) $\AA$, while the longest is 1.461 (3) $\AA$ (Olmstead et al., 2003). For comparison, the ranges of the four shortest pent-hex junctions in (II) and (III) are 1.343 (3)1.365 (3) Å (Kareev, Kuvychko, Lebedkin et al., 2005) and 1.344 (3)-1.364 (3) Å (Kareev, Lebedkin, Popov et al., 2006), respectively.

## Experimental

The synthesis of (I) was accomplished by heating $\mathrm{C}_{60}$ in a stream of $\mathrm{CF}_{3} \mathrm{I}$ at 733 K , as previously reported by Kareev, Kuvychko, Lebedkin et al. (2005); isomer (I) corresponds to $\mathrm{C}_{60}\left(\mathrm{CF}_{3}\right)_{10}-2$ in that paper. The compound was purified by high-performance liquid chromatography and crystals of (I) were grown by slow evaporation of a saturated benzene solution.

## Crystal data

| $\mathrm{C}_{70} \mathrm{~F}_{30} \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{6}$ | $Z=2$ |
| :--- | :--- |
| $M_{r}=1449.75$ | $D_{x}=1.938 \mathrm{Mg} \mathrm{m}^{-3}$ |
| Triclinic, $P \overline{1}$ | Mo $K \alpha$ radiation |
| $a=11.0290(15) \AA$ | Cell parameters from 999 |
| $b=13.7614(18) \AA$ | $\quad$ reflections |
| $c=16.443(2) \AA$ | $\mu=1.7-26.4^{\circ}$ |
| $\alpha=87.785(6)^{\circ}$ | $T=0.19 \mathrm{~mm}^{-1}$ |
| $\beta=85.082(7)^{\circ}$ | Plate, orange |
| $\gamma=88.850(6)^{\circ}$ | $0.37 \times 0.22 \times 0.04 \mathrm{~mm}$ |
| $V=2484.2(6) \AA^{\circ}$ |  |

## Data collection

Bruker Kappa-APEXII
$\quad$ diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Bruker, 2000 $)$
$\quad T_{\min }=0.933, T_{\max }=0.992$
53487 measured reflections

21894 independent reflections 16852 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=35.2^{\circ}$
$h=-16 \rightarrow 17$
$k=-22 \rightarrow 22$
$l=-26 \rightarrow 26$

## Refinement

Refinement on $F^{2}$

$$
\left.\begin{array}{rl}
w= & 1 /[
\end{array} \sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0675 P)^{2}\right)
$$

## References

Bruker (2000). SADABS (Version 2.10) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2006). APEX2 (Version 2.0-2). Bruker AXS Inc., Madison, Wisconsin, USA.
Dorozhkin, E. I., Ignat'eva, D. V., Tamm, N. B., Goryunkov, A. A., Khavrel, P. A., Ioffe, I. N., Popov, A. A., Kuvychko, I. V., Streletskiy, A. V., Markov, V. Yu., Spandl, J., Strauss, S. H. \& Boltalina, O. V. (2006). Chem. Eur. J. 12. In the press.
Goryunkov, A. A., Dorozhkin, E. I., Ignat'eva, D. F., Sidorov, L. N., Kemnitz, E., Sheldrick, G. \& Troyanov, S. I. (2005). Mendeleev Commun. pp. 225-227.

Goryunkov, A. A., Kuvychko, I. V., Ioffe, I. N., Dick, D. L., Sidorov, L. N., Strauss, S. H. \& Boltalina, O. V. (2003). J. Fluorine Chem. 124, 61-64.
Kareev, I. E., Kuvychko, I. V., Lebedkin, S. F., Miller, S. M., Anderson, O. P., Seppelt, K., Strauss, S. H. \& Boltalina, O. V. (2005). J. Am. Chem. Soc. 127, 8362-8375.
Kareev, I. E., Kuvychko, I. V., Popov, A. A., Lebedkin, S. F., Miller, S. M., Anderson, O. P., Strauss, S. H. \& Boltalina, O. V. (2005). Angew. Chem. Int. Ed. 41, 7984-7987.
Kareev, I. E., Kuvychko, I. V., Lebedkin, S. F., Miller, S. M., Anderson, O. P., Strauss, S. H. \& Boltalina, O. V. (2006). Chem. Commun. pp. 308-310.
Kareev, I. E., Lebedkin, S. F., Bubnov, V. P., Yagubskii, E. B., Ioffe, I. N., Kharel, P. A., Kuvychko, I. V., Strauss, S. H. \& Boltalina, O. V. (2005). Angew. Chem. Int. Ed. 44, 1846-1849.
Kareev, I. E., Lebedkin, S. F., Miller, S. M., Anderson, O. P., Strauss, S. H. \& Boltalina, O. V. (2006a). Acta Cryst. E62, o617-o619.
Kareev, I. E., Lebedkin, S. F., Miller, S. M., Anderson, O. P., Strauss, S. H. \& Boltalina, O. V. (2006b). Acta Cryst. E62, o620-o622.
Kareev, I. E., Lebedkin, S. F., Popov, A. A., Miller, S. M., Anderson, O. P., Strauss, S. H. \& Boltalina, O. V. (2006). Acta Cryst. E62, o1501-o1503.
Olmstead, M. M., de Bettencourt-Dias, A., Lee, H. M., Pham, D. \& Balch, A. L. (2003). Dalton Trans. pp. 3227-3232.

Powell, W. H., Cozzi, F., Moss, G. P., Thilgen, C., Hwu, R. J.-R. \& Yerin, A. (2002). Pure Appl. Chem. 74, 629-695.

